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Abstract. In this paper we investigate the isochronicity and linearizability problem for a
cubic polynomial differential system which can be considered as a generalization of the Ric-
cati system. Conditions for isochronicity and linearizability are found. The global structure
of systems of the family with an isochronous center is determined. Furthermore, we find
the order of weak center and study the problem of local bifurcation of critical periods in a
neighborhood of the center.

1. Introduction

A classical problem in the qualitative theory of ordinary differential equations is to char-
acterize the existence of centers and isochronous centers. A singular point of a planar au-
tonomous differential system is called a center if all solutions sufficiently closed to it are
periodic, that is, all trajectories in a small neighborhood of the singularity are ovals. If all
periodic solutions inside the period annulus of the center have the same period it is said that
the center is isochronous.

Poincaré and Lyapunov have shown that the existence of an isochronous center at the
origin of a system of the form

(1.1) ẋ = −y + P (x, y), ẏ = x+Q(x, y),

where P (x, y) and Q(x, y) are real polynomials without constant and linear terms, is equiv-
alent to the linearizability of the system. This equivalence has made the studies of the
isochronicity problem simpler, since the linearizability problem can be extended to the com-
plex field, where the computational methods are more efficient.

The investigation on isochronicity of oscillations started in the 17th century, when Huygens
studied the cycloidal pendulum [27]. However, only in the second half of the last century the
isochronicity problem began to be intensively studied. In 1964 Loud [34] found the necessary
and sufficient conditions for isochronicity of system (1.1) with P and Q being quadratic
homegeneous polynomials. Later on, the isochronicity problem was solved for system (1.1)
when P and Q are homogeneous polynomials of degree three [40] (see also [29]) and degree
five [41]. However in the case of the linear center perturbed by homogeneous polynomials
of degree four the problem is still unsolved, although some partial results were obtained
[7, 23]. The reason is that linearizability quantities (which are polynomials in the parameters
of system (1.1) defined at the beginning of Section 2) have more complicate expressions
in the case of homogeneous perturbations of degree four, than in the case of homogeneous
perturbations of degree five. There are also many works devoted to the investigation of
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particular families of some other polynomial systems, see e.g. [1, 6, 9, 14, 35, 43] and references
therein. Many works also deal with investigation of isochronicity of Hamiltonian systems, see
e.g. [12, 15, 24, 28, 31] and references given there.

The problem of critical period bifurcations is tightly related to the isochronicity problem.
In a neighborhood of a center the so-called period function T (r) gives the least period of the
periodic solution passing through the point with coordinates (x, y) = (r, 0) inside the period
annulus of the center. For a center that is not isochronous any value r > 0 for which T ′(r) = 0
is called a critical period. The problem of critical period bifurcations is aimed on estimating
of the number of critical periods that can arise near the center under small perturbations. In
1989, Chicone and Jacobs [11] introduced for the first time the theory of local bifurcations of
critical periods and solved the problem for the quadratic system. Local bifurcations of critical
periods have been investigated for cubic systems with homogeneous nonlinearities [45], the
reduced Kukles system [46], the Kolmogorov system [10], the Z2-equivariant systems [8] and
some other families (see e.g. [16, 22, 49] and references therein). In [20] a general approach
to studying bifurcations of critical periods based on a complexification of the system was
described, and some upper bounds on the number of critical periods of several cubic systems
were obtained.

In this paper we are interested in the family of Riccati systems. The classic Riccati system
is written in the form

(1.2) ẋ = 1, ẏ = g2(x)y2 + g1(x)y + g0(x),

where each gj(x) is a C1 function with respect to x and g2(x)g0(x) 6≡ 0. System (1.2) becomes
a special case of Berouilli system if g0(x) ≡ 0, and it obviously is a linear differential system
if g2(x) ≡ 0.

The Riccati equation has been invstigated by many authors, see for example [32, 33]
and references therein. They are important since they can be used to solve second-order
ordinary differential equations and can be applied in studying the third-order Schwarzian
differential [37]. It also has many applications in both physics and mathematics. For instance,
renormalization group equations for running coupling constants in quantum field theories [5],
nonlinear physics [36], Newton’s laws of motion [39], thermodynamics [44] and variational
calculus [50].

Recently Llibre and Valls [32, 33] investigated the planar differential system

ẋ = f(y), ẏ = g2(x)y2 + g1(x)y + g0(x),

which is called the generalized Riccati system, since it becomes the classic Riccati system
when f(y) ≡ 1. In this paper we study a subfamily of the generalized Riccati system, cubic
systems of the form

(1.3)

ẋ = −y + a02y
2 + a03y

3,

ẏ = (b02 + b12x)y2 + (b11x+ b21x
2)y + (x+ b20x

2 + b30x
3)

= x+ b20x
2 + b11xy + b02y

2 + b30x
3 + b21x

2y + b12xy
2,

where x, y are unknown real functions and aij , bij are real parameters. Note that system (1.3)
is the so-called reduced Kukles system when a02 = a03 = 0.

The aims of our study are to obtain conditions on parameters aij and bij for the lineariz-
ability of system (1.3), to study the global structures of trajectories when the system has an
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isochronous center, and to investigate the local bifurcations of critical periods at the origin.
In Section 2 we present our main result on linearizability, Theorem 2.1, which gives condi-
tions for the linearizability of system (1.3). We also describe an approach for deriving such
conditions which is based on making use of modular computations which are performed in
the systems of computer algebra Singular [17] and Mathematica [48]. The approach can
be applied to investigate many problems involving solving systems of algebraic polynomials.
In Section 3 we study the global dynamics of system (1.3) when the origin is an isochronous
center. The last section is devoted to the investigation of local bifurcations of critical periods
in a neighborhood of the center.

2. Linearizability of system (1.3)

We first briefly remind an approach for studying the isochronicity and linearizability prob-
lems for polynomial differential systems of the form

(2.1) ẋ = −y +
n∑

p+q=2

ap,qx
pyq, ẏ = x+

n∑
p+q=2

bp,qx
pyq,

where x, y and ap,q, bp,q are in R.
System (2.1) is linearizable if there is an analytic change of coordinates

(2.2) x1 = x+
∑

m+n≥2

cm,nx
myn, y1 = y +

∑
m+n≥2

dm,nx
myn,

which reduces (2.1) to the canonical linear system ẋ1 = −y1, ẏ1 = x1.
Obstacles for existence of a transformation (2.2) are some polynomials in parameters of

system (2.1) called the linearizability quantities and denoted by ik, jk (k = 1, 2, ...).
Differentiating with respect to t both sides of each equation of (2.2) we obtain

(2.3)

ẋ1 =ẋ+

 ∑
m+n≥2

mcm,nx
m−1yn

 ẋ+

 ∑
m+n≥2

ncm,nx
myn−1

 ẏ,

ẏ1 =ẏ +

 ∑
m+n≥2

mdm,nx
m−1yn

 ẋ+

 ∑
m+n≥2

ndm,nx
myn−1

 ẏ.

Substituting in the above equations the expressions from (2.2) and (2.1), one computes the
linearizability quantities ik, jk step-by-step (see e.g. [21] for more details).

From (2.3) it is easy to see that the linearizability quantities ik, jk are polynomials in
parameters ap,q, bp,q of system (2.1). We denote by (a, b) the s-tuple (s is the number of pa-
rameters ap,q, bp,q in system (2.1)) of parameters of (2.1), so (a, b) = (a2,0, a1,1, . . . , b0,n), and
by R[a, b] and C[a, b] the rings of polynomials in ap,q, bp,q with real and complex coefficients,
respectively.

Thus, the simultaneous vanishing of all linearizability quantities ik, jk provides conditions
which characterize when a system of the form (2.1) is linearizable. The ideal defined by the
linearizability quantities, L = 〈i1, j1, i2, j2, ...〉 ⊂ R[a, b], is called the linearizability ideal and
its affine variety, VL = V(L) is called the linearizability variety.
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In order to find a linearizing change of coordinates explicitly one can look for Darboux
linearization. To construct a Darboux linearization for system (2.1) it is convenient to com-
plexify the system using the substitution

(2.4) z = x+ iy, w = x− iy.
Then, after a time rescaling by i we obtain from (2.1) a system of the form

(2.5) ż = z +X(z, w), ẇ = −w − Y (z, w).

System (2.1) is linearizable if and only if system (2.5) is linearizable.
A Darboux factor of system (2.5) is a polynomial f(z, w) satisfying

∂f

∂z
ż +

∂f

∂w
ẇ = Kf,

where polynomial K(z, w) is called the cofactor of f . A Darboux linearization of system (2.5)
is an analytic change of coordinates z1 = Z1(z, w), w1 = W1(z, w), such that

Z1(z, w) =
m∏
j=0

f
αj

j (z, w) = z + Z̃1(z, w),

W1(z, w) =

n∏
j=0

g
βj
j (z, w) = w + W̃1(z, w),

which linearizes (2.5), where fj , gj ∈ C[z, w], αj , βj ∈ C, and Z̃1 and W̃1 have neither constant
terms nor linear terms.

It is easy to see that system (2.5) is Darboux linearizable if there exist s+ 1 ≥ 1 Darboux
factors f0, ..., fs with corresponding cofactors K0, ...,Ks, and t + 1 ≥ 1 Darboux factors
g0, ..., gt with corresponding cofactors L0, ..., Lt with the following properties:

(i) f0(z, w) = z + · · · but fj(0, 0) = 1 for j ≥ 1;
(ii) g0(z, w) = w + · · · but gj(0, 0) = 1 for j ≥ 1; and

(iii) there are s+ t constants α1, ..., αs, β1, ..., βt ∈ C such that

(2.6) K0 + α1K1 + · · ·+ αsKs = 1 and L0 + β1L1 + · · ·+ βtLt = −1.

The Darboux linearization is then given by the transformations

z1 = H1(z, w) = f0f
α1
1 · · · f

αs
s , y1 = H2(z, w) = g0g

β1
1 · · · g

βt
t .

The readers can consult [13, 35, 43] for more details.
Before passing to the results of our paper we remind some fact about solutions of systems

of nonlinear polynomial equations which we will need for our study.
Denote by k[x1, . . . , xn] the ring of polynomials with coefficients in a field k and consider

a system of polynomials of k[x1, . . . , xn]:

f1(x1, . . . , xn) = 0,

...(2.7)

fm(x1, . . . , xn) = 0.

We recall that the ideal I in k[x1, . . . , xn] generated by polynomials f1, . . . , fm, denoted
by I = 〈f1, . . . , fm〉, is the set of all polynomials of k[x1, . . . , xn] expressed in the form
f1h1 + f2h2 + · · ·+ fmhm, where h1, h2, . . . , hm are polynomials of k[x1, . . . , xn]. The variety
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of the ideal I = 〈f1, . . . , fm〉 ⊂ k[x1, . . . , xn] in kn, denoted by V(I), is the zero set of all
polynomials of I,

V(I) = {A = (a1, . . . , an) ∈ kn|f(A) = 0 for all f ∈ I} .

The situation when the variety of a polynomial ideal consists of a finite number of points
arises very rarely. In a generic case, the variety consists of infinitely many points, so generally
speaking,“to solve” system (2.7) means to find a decomposition of the variety of the ideal into
irreducible components. More precisely, an affine variety V ⊂ kn is irreducible if, whenever
V = V1 ∪ V2 for affine varieties V1 and V2, then either V1 = V or V2 = V . Let I be an ideal
and V = V(I) its variety. Then V can be represented as a union of irreducible components,

V = V1∪· · ·∪Vm, where each Vi is irreducible. The radical of I denoted by
√
I is the set of all

polynomials f of k[x1, . . . , xn] such that for some non-negative integer p fp is in I. Clearly,

I and
√
I have the same varieties. It is known that

√
I can be expressed as an intersection

of prime ideals,
√
I = ∩sj=1Qj . Prime ideals Qi are called the minimal associate primes of I.

Let Vi (i = 1, . . . , s) be the variety of Qi. Since the variety of an intersection of some ideals

is equal to the union of the varieties of the ideals, we have that V(I) = V(
√
I) = ∩sj=1Vj .

For example, if I = 〈x2y3, xz5〉, then
√
I = 〈xy, xz〉 = 〈x〉 ∩ 〈y, z〉, that is, the variety of

I is the union of two irreducible components: the plane x = 0 and the line y = z = 0. In
the computer algebra system Singular [17] one can compute the minimal associate primes
of a given polynomial ideal and, thus, the irreducible decomposition of its variety using the
routine minAssGTZ.

Proceeding now to the results of our paper we first state the following theorem on the
linearizability of system (1.3).

Theorem 2.1. System (1.3) is linearizable at the origin if one of the following conditions
holds:

(1) b12 = a02 = b30 = b21 = a03 = b02 + b20 = b211 + 4b220 = 0,
(2) b12 = a02 = b20 = b02 = b21 = a03 = 9b30 − b211 = 0,
(3) b12 = a02 = b11 = b20 = b30 = b21 = 9a03 + 4b202 = 0,
(4) b12 = b30 = b21 = a03 = 2b02 + 5b20 = 10a02 − 3b11 = 4b211 + 25b220 = 0.

Proof. Using the computer algebra system Mathematica and the standard procedure men-
tioned above for system (1.3) we have computed the first eight pairs of the linearizability
quantities i1, j1, ..., i8, j8. Their expressions are very large, so we only present the first two
pairs in the Appendix. The reader can easily compute the other quantities using any available
computer algebra system 1.

The next computational step is to compute the irreducible decomposition of the variety
V(L8) = V(〈i1, j1, ..., i8, j8〉).

Performing the computations by the routine minAssGTZ [18] of Singular [17] over the
field of characteristic 32452843 we obtain that V(L9) is equal to the union of the varieties of
four ideals. After lifting these four ideals to the ring of polynomials with rational coefficients

1 One can download linearizability quantities i1, j1, . . ., i8, j8 and the Singular code to
perform the decomposition of the variety from http://teacher.shnu.edu.cn/ upload/article/files/79/14/
f36e87e342b8b0d6977e6debdeb3/3b818cf4-a6f7-4f07-8669-f4b78e48f733.txt.

http://teacher.shnu.edu.cn/_upload/article/files/79/14/f36e87e342b8b0d6977e6debdeb3/3b818cf4-a6f7-4f07-8669-f4b78e48f733.txt
http://teacher.shnu.edu.cn/_upload/article/files/79/14/f36e87e342b8b0d6977e6debdeb3/3b818cf4-a6f7-4f07-8669-f4b78e48f733.txt
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using the rational reconstruction algorithm of [47] we obtain the ideals

J1 =〈b12, a02, b30, b21, a03, b02 + b20, b
2
11 + 4b220〉,

J2 =〈b12, a02, b20, b02, b21, a03, 9b30 − b211〉,
J3 =〈b12, a02, b11, b20, b30, b21, 9a03 + 4b202〉,
J4 =〈b12, b30, b21, a03, 2b02 + 5b20, 10a02 − 3b11, 4b

2
11 + 25b220〉.

The varieties of J1, J2, J3 and J4 provide conditions (1), (2), (3) and (4) of the theorem,
respectively.

To check the correctness of the obtained conditions we use the procedure described in
[42]. First, we computed the ideal J = J1 ∩ J2 ∩ J3 ∩ J4, which defines the union of all four
sets given in the statement of the theorem. Then we check that V(J) = V(L8). According
to the Radical Membership Test, to verify the inclusion V(J) ⊃ V(L8) it is sufficient to
check that the Groebner bases of all ideals 〈J, 1 − wik〉, 〈J, 1 − wjk〉 (where k = 1, . . . , 9
and w is a new variable) computed over Q are {1}. The computations show that this is the
case. To check the opposite inclusion, V(J) ⊂ V(L8), it is sufficient to check that Groebner
bases of the ideals 〈L8, 1 − wfi〉 (where the polynomials fi’s are the polynomials of a basis
of J) computed over Q are equal to {1}. Unfortunately, we were not able to perform these
computations over Q however we have checked that all the bases are {1} over few fields of
finite characteristic. It yields that the list of conditions in Theorem 2.1 is the complete list
of linearizability conditions for system (1.3) with high probability [3].

We now prove that under each of conditions (1)–(4) of the theorem the system is lineariz-
able.
Condition (1). In this case b11 = ±2b20i. We consider only the case b11 = 2b20i, since when

b11 = −2b20i the proof is analogous. After the change of variables (2.4) system (1.3) becomes

(2.8)
ż =z + b20z

2,

ẇ =− w − b20z
2,

which is a quadratic system. By Theorem 3.1 of [13] and Theorem 4.5.1 of [43] system (2.8)
is Darboux linearizable and, therefore, system (1.3) is linearizable if condition (1) holds.

Condition (2). After substitution (2.4) system (1.3) becomes

(2.9)
ż =z +

1

72
(−18ib11z

2 + 18ib11w
2 + b211z

3 + 3b211z
2w + 3b211zw

2 + b211w
3),

ẇ =− w +
1

72
(18ib11z

2 − 18ib11w
2 − b211z

3 − 3b211z
2w − 3b211zw

2 − b211w
3).

It has the Darboux factors

l1 =z +
ib11

12
z2 +

ib11

6
zw +

ib11

12
w2,

l2 =w − ib11

12
z2 − ib11

6
zw − ib11

12
w2,

l3 =1− ib11

6
z +

b211

36
z2 +

ib11

6
w +

b211

18
zw +

b211

36
w2,

l4 =1− ib11

3
z +

b211

36
z2 +

ib11

3
w +

b211

18
zw +

b211

36
w2
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with the respective cofactors

k1 = 1− ib11

6
z − ib11

6
w, k2 = −1− ib11

6
z − ib11

6
w,

k3 = − ib11

6
z − ib11

6
w, k4 = − ib11

3
z − ib11

3
w.

It is easy to verify that (2.6) is satisfied with α1 = 1, α2 = −1, β1 = 1 and β2 = −1. Hence
the Darboux linearization for system (2.9) is given by the analytic change of coordinates

z1 = l1l
α1
3 lα2

4 , w1 = l2l
β1
3 lβ24 .

Thus, system (2.9) is linearizable and therefore the corresponding system (1.3) is linearizable
as well.

Condition (3). In this case after substitution (2.4) the corresponding system (1.3) is changed
to

(2.10)
ż =z +

1

36
(−9b02z

2 + 18b02zw − 9b02w
2 − 2b202z

3 + 6b202z
2w − 6b202zw

2 + 2b202w
3),

ẇ =− w +
1

36
(9b02z

2 − 18b02zw + 9b02w
2 − 2b202z

3 + 6b202z
2w − 6b202zw

2 + 2b202w
3).

System (2.10) has the Darboux factors

l1 =z − b02

12
z2 +

b02

6
zw − b02

12
w2,

l2 =w − b02

12
z2 +

b02

6
zw − b02

12
w2,

l3 =1− 2b02

3
z +

2b202

9
z2 − 2b02

3
w − 4b202

9
zw +

2b202

9
w2,

l4 =1− b02

3
z +

b202

18
z2 − b02

3
w − b202

9
zw +

b202

18
w2,

which allow to construct the Darboux linearization

z1 = l1l
α1
3 lα2

4 , w1 = l2l
β1
3 lβ24 ,

where α1 = 1, α2 = −3, β1 = 1 and β2 = −3.

Condition (4). For this condition it is easy to see that b11 = ±5b20i/2. We consider only the
case b11 = 5b20i/2, since when b11 = −5b20i/2 the proof is analogous. After transformation
(2.4) system (1.3) becomes

(2.11)
ż =z +

1

16
(21b20z

2 − 6b20zw + b20w
2),

ẇ =− w +
1

16
(−27b20z

2 + 18b20zw − 7b20w
2).
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System (2.11) has the Darboux factors

l1 =z +
1

16
3b20z

2 +
1

8
b20zw +

1

48
b20w

2,

l2 =w +
1

16
9b20z

2 +
3b20

8
zw +

b20

16
w2,

l3 =1 + 3b20z +
27b220

8
z2 + b20w −

3b220

4
zw +

3b220

8
w2,

l4 =1 +
3b20

2
z +

9b220

16
z2 +

b20

2
w +

3b220

8
zw +

b220

16
w2,

yielding the Darboux linearization

z1 = l1l
α1
3 lα2

4 , w1 = l2l
β1
3 lβ24 ,

where α1 = 1, α2 = −3, β1 = 1 and β2 = −3. �

3. Global dynamics of system (1.3) having an isochronous center

Global phase portrait of a planar autonomous system is usually plotted on the Poincaré
disc, which is obtained using the Poincaré compactification. We remind the procedure briefly,
for more details see for instance [2, 19].

Consider the planar vector field

X = P̃ (x, y)
∂

∂x
+ Q̃(x, y)

∂

∂y
,

where P̃ (x, y) and Q̃(x, y) are polynomials of degree n. Let S2 = {y = (y1, y2, y3) ∈ R3 :
y2

1 + y2
2 + y2

3 = 1}, S1 be the equator of S2 and p(X ) be the Poincaré compactification of X
on S2. On S2 \ S1 there are two symmetric copies of X , and once we know the behaviour of
p(X ) near S1, we know the behaviour of X in a neighbourhood of the infinity. The Poincaré
compactification has the property that S1 is invariant under the flow of p(X ). The projection
of the closed northern hemisphere of S2 on y3 = 0 under (y1, y2, y3) 7→ (y1, y2) is called the
Poincaré disc, and its boundary is S1.

Because S2 is a differentiable manifold, we consider the six local charts Ui = {y ∈ S2 : yi >
0} and Vi = {y ∈ S2 : yi < 0} for computing the expression of p(X ) where i = 1, 2, 3. The dif-
feomorphisms Fi : Ui → R2 and Gi : Vi → R2 for i = 1, 2, 3 are the inverses of the central pro-
jections from the planes tangent at the points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1),
and (0, 0,−1) respectively. We denote by (u, v) the value of Fi(y) or Gi(y) for any i = 1, 2, 3.

The expression for p(X ) in the local chart (U1, F1) is given by

u̇ = vn
[
−uP̃

(
1

v
,
u

v

)
+ Q̃

(
1

v
,
u

v

)]
, v̇ = −vn+1P̃

(
1

v
,
u

v

)
,

for (U2, F2) is

u̇ = vn
[
P̃

(
u

v
,

1

v

)
− uQ̃

(
u

v
,

1

v

)]
, v̇ = −vn+1Q̃

(
u

v
,

1

v

)
,

and for (U3, F3) is

u̇ = P̃ (u, v), v̇ = Q̃(u, v).
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The expressions for Vi’s are the same as that for Ui’s but multiplied by the factor (−1)n−1.
In these coordinates v = 0 always denotes the points of S1. When we study the infinite
singular points on the charts U2 ∪ V2, we only need to verify if the origin of these charts are
singular points.

It is said that two polynomial vector fields X and Y on R2 are topologically equivalent if
there exists a homeomorphism on S2 preserving the infinity S1 carrying orbits of the flow
induced by p(X ) into orbits of the flow induced by p(Y), preserving or not the sense of all
orbits.

In this section, we study the global structures of system (1.3) in Poincaré discs for the case
when it has an isochronous center listed in Theorem 2.1.

Theorem 3.1. The global phase portrait of system (1.3) possessing an isochronous center
listed in Theorem 2.1 is topologically equivalent to one of phase portraits in Fig. 1. More pre-
cisely, there exists only one equilibrium of system (1.3) in the plane, which is an isochronous
center at the origin. The neighborhood of equilibrium at infinity consists of one elliptic sec-
tor and three hyperbolic sectors (or two hyperbolic sectors and two parabolic sectors) under
conditions (2) and b11 6= 0 (or under conditions (3) and b02 6= 0); otherwise, the isochronous
center is global.

Figure 1. Global phase portraits of system (1.3) possessing an isochronous
center listed in Theorem 2.1.

Proof. From Theorem 2.1 we have that under conditions (1)–(4) system (1.3) is linearizable.
Under conditions (1) and (4) real systems (1.3) becomes the linear system ẋ = −y, ẏ = x
and its phase portrait is presented in Figure 1.A.

Under conditions (2) and (3) system (1.3) becomes

(3.1) ẋ = −y, ẏ = x+ b11xy +
b211

9
x3,

and

(3.2) ẋ = −y − 4

9
b202y

3, ẏ = x+ b02y
2,

respectively.
Note that if b11 = 0 in (3.1) and b02 = 0 in (3.2), then both systems are the canonic linear

systems and have a global center shown in Figure 1.A. Thus, we consider the cases when
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b11 6= 0 and b02 6= 0. In both cases by a linear change of coordinates we can reduce systems
(3.1) and (3.2) to systems

(3.3) ẋ = −y, ẏ = x+ xy +
x3

9
,

and

(3.4) ẋ = −y − 4

9
y3, ẏ = x+ y2,

respectively.
System (3.3) has only the isochronous center at (0, 0) as a finite singular point. Now we

analyze its singular points at infinity. In the local chart U1 system (3.3) becomes

u̇ =
1

9
(1 + 9uv + 9v2 + 9u2v2), v̇ = uv3.

This system has no real singular points. So the unique possible infinite singular point is the
origin of the local chart U2. In the local chart U2 system (3.3) becomes

(3.5) u̇ =
1

9
(−u4 − 9u2v − 9v2 − 9u2v2), v̇ = −1

9
uv(u2 + 9v + 9v2).

It is clear that (0, 0) is a singular point of (3.5) and the linear part of (3.5) at (0, 0) is the

null matrix, i.e,

(
0 0
0 0

)
. Applying the directional blow-up in the v-axis twice we obtain

that the behaviour of the orbits close to the origin of U2 is as in Figure 2. Therefore, the
global phase portrait of system (3.3) is topologically equivalent to the one in Figure 1.B.

Figure 2. Behaviour of
the orbits close to the
origin of system (3.5).

Figure 3. Behaviour of
the orbits close to the
origin of system (3.6).

Now we study system (3.4). This system has only the isochronous center at (0, 0) as a finite
singular point. For the infinite singular points, in the local chart U1 system (3.4) becomes

(3.6) u̇ =
1

9
(4u4 + 9u2v + 9v2 + 9u2v2), v̇ =

1

9
uv(4u2 + 9v2).

This system has only (0, 0) as a singular point, and the linear part of (3.6) at (0, 0) is the null
matrix. Applying the directional blow-up in the v-axis twice we obtain that the behaviour
of the orbits close to the origin of U1 is as showing in Figure 3.
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In the local chart U2 system (3.4) becomes

(3.7) u̇ =
1

9
(−4− 9uv − 9v2 − 9u2v2), v̇ = −v2(1 + uv).

As it is mentioned above, we need to study only the origin of this chart, but (0, 0) is not a
singular point for system (3.7). Thus, the global phase portrait of system (3.4) is topologically
equivalent to the portrait in Figure 1.C. �

4. Weak center and local bifurcation of critical periods

Let α = (a20, a11, ..., b20, b11, ...) be the string of parameters of real system (2.1) with a
center at the origin. Changing the system to the polar coordinates x = r cos θ, y = r sin θ
and eliminating t, we obtain

(4.1)
dr

dθ
= r

xẋ+ yẏ

xẏ − yẋ
=

rH(r, θ, α)

1 +G(r, θ, α)
,

where H(r, θ, α) and G(r, θ, α) are polynomials of r, α, cos θ and sin θ. The solution r = r(θ, α)
of equation (4.1) satisfying the initial condition r(0, α) = r0 > 0 may be locally represented
as a convergent power series in r0,

(4.2) r(θ, α) =

∞∑
k=1

vk(θ, α)rk0 .

Substituting (4.2) into (4.1), one can find coefficients vk(θ, α) (k > 1) by successive integra-
tion.

Assuming that Γr0 is the closed trajectory through (r0, 0), we can compute the period
function as

T (r0, α) =

∮
Γr0

dt =

∫ 2π

0

dθ

1 +G(r, θ, α)
=
∞∑
k=0

pk(α)rk0 .

The period function is even and has the Taylor series expansion

(4.3) T (r0, α) = 2π +
∞∑
k=1

p2k(α)r2k
0 ,

where r0 < δ and coefficients p2k’s are polynomials in parameters of system (2.1) (see e.g.
[1, 11, 35, 43]).

If p2 = ... = p2k = 0 and p2k+2 6= 0, then the origin of system (2.1) is a weak center of
order k. If p2k = 0 for each k ≥ 1, then the origin is an isochronous center. For a center
which is not isochronous, a local critical period is any value r̃0 < δ for which T ′(r̃0) = 0.

By classical results of local critical period bifurcations [11], at most k local critical periods
can bifurcate from the period function related to a weak center of order k. In order to prove
that there are perturbations with exactly k local critical periods, we remind Theorem 2 of
[49] as follows.
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Theorem 4.1. Assume that the period constants p2j (j = 1, 2, ..., k) of system (2.1) depend
on k independent parameters a1, a2, ..., ak. Suppose that there exists ã = (ã1, ã2, ..., ãk) such
that

p2j(ã) = p2j(ã1, ã2, ..., ãk) = 0, j = 1, 2, ..., k,

p2k+2(ã) 6= 0

and

det
(∂(p2, p4, ..., p2k)

∂(a1, a2, ..., ak)
(ã)
)
6= 0,

then k critical periods bifurcate from the center at the origin of system (2.1) after small
appropriate perturbations.

Remark. The proof that k critical periods can bifurcate after perturbations of system (2.1)
corresponding to parameters ã is derived using the Implicit Function Theorem, and the proof
that the bound k is sharp can be derived either using the Mean Values Theorem [26] or
Rolle’s Theorem [4]. In practice k critical periods can be obtained choosing perturbations
such that for some system a∗ close to

|p2(a∗)| � |p4(a∗)| � · · · � |p2k(a
∗)| � |p2k+2(a∗)|

and the signs in the sequence p2(a∗), p4(a∗), . . . p2k(a
∗), p2k+2(a∗) alternate (see e.g. [25, 30,

43] for more details).

Because bifurcations of critical periods are bifurcations from centers, to study them for
system (1.3) we need to know the center variety of the system. Due to computational diffi-
culties the center variety of system (1.3) has been found only in the case when a03 = 0 [51].
So, from now on we assume that in system (1.3) a03 = 0 and consider the system

(4.4)
ẋ = −y + a02y

2,

ẏ = x+ (b20x
2 + b11xy + b02y

2) + (b30x
3 + b21x

2y + b12xy
2).

The centers of system (4.4) are identified in the following theorem.

Theorem 4.2 ([51]). System (4.4) has a center at the origin if the 7-tuple of its parameters
belongs to the variety of one of the following prime ideals:

(1) I1 = 〈b21, b20, b02〉,
(2) I2 = 〈b30, b12, b02, b11b20 − b21〉,
(3) I3 = 〈b30, b21, b12,−2b02b

2
11 +4b202b20− b211b20, 2a02b11 + b211−4b02b20, 2a02b02− b02b11−

b11b20, 4a
2
02 − b211 − 4b220〉,

(4) I4 = 〈b21, b11, a02〉,
(5) I5 = 〈a02, b02b21 + b11b30, 2b02b12 + b12b20 + b02b30, b02b11 + b11b20 − b21, b

2
02 + b02b20 +

b30, b12b20b21−2b11b12b30−b11b
2
30, b11b20b21−b221−b211b30, b12b

2
20−4b12b30−b02b20b30−

2b230, b11b12b20 − 2b12b21 + b11b20b30 − b21b30,−(b12b
2
21) + b211b12b30 + b211b

2
30〉,

(6) I6 = 〈b21, b12, b11, b02〉,
(7) I7 = 〈b21, b12, b30, 3b02 + 5b20, 5a02 − b11, 6b

2
11 + 25b220〉.

Remark. Like in the proof of our Theorem 2.1 modular computations were used in order
to determine centers of system (4.4), so it can happen that the list of centers of the system
given in Theorem 4.2 is incomplete. For this reason it stands in the theorem ”if” but not ”if
and only if”.
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We consider the local bifurcations of critical periods for system (4.4) when all param-
eters are real. Because in R7 the variety of I7 consists of one point which is the origin
(0, 0, 0, 0, 0, 0, 0) ∈ R7, we only need to consider varieties of first six ideals I1 − I6.

Theorem 4.3. Suppose that the origin O : (0, 0) of system (4.4) is a weak center of a finite
order.
(1) Then the order is at most 3. More precisely, the order is at most 3 (resp. 0, 0, 3, 2, 2)
when parameters belong to the variety of the ideal I1 (resp. I2 − I6).
(2) Moreover, at most 3 (resp. 0, 0, 3, 2, 2) critical periods can be bifurcated from the weak
center O of system (4.4) and there exists a perturbation with exactly 3 (resp. 0, 0, 3, 2, 2)
critical periods bifurcated from O when parameters belong to the variety of the ideal I1 (resp.
I2 − I6).

Proof. When the parameter α = (a02, b20, b11, b12, b02, b21, b30) belongs to the variety of the
ideal I1, we found that the first four period coefficients of (4.3) are

p1,2(α) = 10a2
02 − a02b11 + b211 − 3b12 − 9b30,

p1,4(α) = 1540a4
02 + 700a3

02b11 + 21a2
02b

2
11 − 2a02b

3
11 + b411 + 84a2

02b12 + 300a2
02b30

+6a02b11b12 + 18a02b11b30 − 6b211b12 − 66b211b30 + 9b212 + 54b12b30 + 513b230,

p1,6(α) = 3403400a6
02 + 3303300a5

02b11 + 690690a4
02b

2
11 − 699a2

02b
4
11 + 281340a3

02b11b30

−139b611 + 1261260a4
02b12 + 1455300a4

02b30 + 346500a3
02b11b12 + 11935a3

02b
3
11

+7263a2
02b

2
11b12 − 4995a2

02b
2
11b30 − 3366a02b

3
11b12 − 2538a02b

3
11b30 + 417a02b

5
11

+1251b411b12 + 1377b411b30 + 6966a2
02b

2
12 + 31860a2

02b12b30 − 52650a2
02b

2
30

+13878a02b11b12b30 − 4455a02b11b
2
30 − 3321b211b

2
12 + 2025b312 + 5265b212b30

−7614b211b12b30 + 41391b211b
2
30 − 13365b12b

2
30 − 382725b330 + 7209a02b11b

2
12.

We omit the expression of p1,8(α), since it is long and the number of its terms is 55.
We compute the decomposition of 〈p1,2, p1,4, p1,6, p1,8〉 with minAssGTZ and obtain 〈a02, b

2
11−

9b30, b12〉. That is, the condition p1,2 = p1,4 = p1,6 = p1,8 = 0 yields that b12 = a02 = b20 =
b02 = b21 = a03 = 9b30 − b211 = 0, showing that the origin is an isochronous center of system
(4.4) in this case by Theorem 2.1.

Solving the equation p1,2(α) = 0 we get

b12 = b̃12 := (10/3)a2
02 − (1/3)a02b11 + (1/3)b211 − 3b30.(4.5)

Substituting (4.5) in p1,4(α), we obtain

432b230 + 48(a2
02 − b211)b30 + 1920a4

02 + 672a3
02b11 + 48a2

02b
2
11 = 0.

Thus, when −1439a4
02− 504a3

02b11− 38a2
02b

2
11 + b411 < 0 the origin O is a weak center of order

1. When −1439a4
02 − 504a3

02b11 − 38a2
02b

2
11 + b411 ≥ 0, from p1,4(α) = 0 we find that

b30 = b̃30 :=
1

18

(
− a2

02 + b211 +
√
−1439a4

02 − 504a3
02b11 − 38a2

02b
2
11 + b411

)
.

We now employ the procedure Reduce of computer algebra system Mathematica for the
set of equalities and inequalities {b12 = b̃12, b30 = b̃30,−1439a4

02−504a3
02b11−38a2

02b
2
11 +b411 ≥
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0, p1,6(α) = 0, p1,8(α) 6= 0}, and find that this semi-algebraic system is fulfilled if and only if
a02 6= 0 and

−128966505300a10
02 − 131928442900a9

02b11 − 62892021225a8
02b

2
11 − 18497447700a7

02b
3
11

−3614043210a6
02b

4
11 − 467726370a5

02b
5
11 − 37088580a4

02b
6
11 − 1472760a3

02b
7
11

−19938a2
02b

8
11 + 1650a02b

9
11 + 125b10

11 = 0.(4.6)

Assuming that a02 = 1/2, we can calculate one of solutions b11 ≈ −2.405222225 from above
equation, which indicates the existence of solutions of above equation with respect to pa-
rameters a02 and b11 in real field. Moreover, computing with Mathematica the rank of the
matrix

∂(p1,2, p1,4, p1,6)

∂(a02, b11, b12, b30)
,

we find that it is equal to 3 when b12 = b̃12, b30 = b̃30, a02 6= 0 and (4.6) holds. From Theorem
4.1 there exists a perturbation of system (4.4) with exactly 3 critical periods bifurcated from
weak center O of order 3 when α belongs to the variety of I1.

When the parameter α = (a02, b20, b11, b12, b02, b21, b30) belongs to the variety of the ideal
I2, we have the first period coefficient in (4.3):

p2,2(α) = 10a2
02 − a02b11 + b211 + 10b220,

which cannot be equal to zero in the real field, since 10a2
02 − a02b11 + b211 > 0 unless a02 =

b11 = 0. That is, the center at the origin is of order 0 in this case.
When the parameter α = (a02, b20, b11, b12, b02, b21, b30) lies in the variety of the ideal I3,

we compute the first period coefficient in (4.3):

p3,2(α) = 10a2
02 − a02b11 + b211 + 4b202 + 10b02b20 + 10b220,

finding that p3,2(α) 6= 0 unless all parameters vanish. Thus the center O is of order 0 in this
case.

When the parameter α = (a02, b20, b11, b12, b02, b21, b30) belongs to the variety of the ideal
I4 or I5, we can see that system (4.4) is a reduced Kukles system. The variety of ideal I4

(resp. I5) for center conditions corresponds to the center type KIII (resp. KII or KIV ) in
[46]. Applying Theorems 3.3, 3.4 and 3.7 of [46] we obtain that the order at the origin is
at most 3 (resp. 2), and there exists a perturbation with exactly 3 (or 2) critical periods
bifurcated from O when parameters belong to the variety of the ideal I4 (resp. I5).

When the parameter α = (a02, b20, b11, b12, b02, b21, b30) belongs to the variety of the ideal
I6, we found that the first three period coefficients in (4.3) are

p6,2(α) = 10a2
02 + 10b220 − 9b30,

p6,4(α) = 1540a4
02 + 200a2

02b
2
20 + 1540b420 + 300a2

02b30 − 3300b220b30 + 513b230,

p6,6(α) = 136136a6
02 + 38808a4

02b
2
20 + 13080a2

02b
4
20 + 165704b620 + 58212a4

02b30

−17496a2
02b

2
20b30 − 546588b420b30 − 2106a2

02b
2
30 + 341334b220b

2
30 − 15309b330.

Eliminating b30 from p6,2(α) = 0 we find

b30 = b̂30 := (10a2
02 + 10b220)/9.
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Letting b30 = b̂30 we obtain from p6,4 = 0 that

47a4
02 − 35a2

02b
2
20 − 28b420 = 0,

yielding

a02 = â02 := ±
√

35/94 + (3/94)
√

721 b20.

Eliminating b30 and a02 by substituting b30 = b̂30 and a02 = â02 into p6,6(α), we obtain

b620(3578681 + 142373
√

721),

which does not vanish if b20 6= 0. Therefore, the order of the weak center is at most 2, and
there exists a perturbation with exactly 2 critical periods bifurcated from O when parameters
belong to the variety of the ideal I6 by Theorem 4.1, since the rank of the matrix

∂(p6,2, p6,4)

∂(a02, b20, b30)
,

is equal to 2 when b30 = b̂30, a02 = â02 and b20 6= 0. Notice that when b20 = 0 and a02 6= 0
the center O is a weak center of order 1, and when b20 = a02 = 0 the center O is either the
linear isochronous center or the order is 0. �

5. Conclusion

For cubic generalized Riccati system (1.3), we derived conditions on parameters of the
system for the linearizability of the origin, see conditions (1)-(4) of Theorem 2.1.

For the study we have used the approach based on the modular calculations of the set of
solutions of polynomial systems, which was used for the first time in [41] and described in
details in [42]. The approach can be considered as one between precise symbolic computations
and numerical computations since it produces a result which is not completely correct, but
correct with high probability – in the sense that it is easily verified if the obtained solutions
of a given system of polynomials are correct, but it can happen, that some solutions are lost.
Recently an efficient algorithm to verify if the list of solutions obtained with the approach is
complete was proposed in [38] however it is not yet implemented in freely available computer
algebra systems. The approach can be efficiently applied to study various mathematical
models where arises the problem of solving polynomial equations.

When the origin is an isochronous center, we found that system (1.3) has at most three
topologically equivalent global structures, which are the global center at the origin, the neigh-
borhood of equilibrium at infinity consists of one elliptic sector and three hyperbolic sectors,
and the neighborhood of equilibrium at infinity consists of two hyperbolic sectors and two
parabolic sectors, as shown in Theorem 3.1. The last result is the investigation of local bi-
furcations of critical periods in a neighborhood of the center. We proved that the order of
weak center at the origin is at most 3 when parameters belong to the center variety and at
most 3 critical periods can be bifurcated from the weak center of system (4.4), as shown in
Theorem 4.3.
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Appendix

Here are listed the first two pairs of the linearizability quantities of system (1.3).

i1 =10a2
02 + 9a03 + 4b202 − a02b11 + b211 − 3b12 + 10b02b20 + 10b220 − 9b30,

j1 =2a02b02 − b02b11 − b11b20 + b21,

i2 =168a2
02a03 − 272a2

02b
2
02 − 72a03b

2
02 − 32b402 − 112a3

02b11 − 42a02a03b11 + 40a02b
2
02b11 − 21a03b

2
11

− 18b202b
2
11 − 21a02b

3
11 − b411 + 12a2

02b12 − 48b202b12 + 72a02b11b12 − 3b211b12 + 18b212 − 48a2
02b02b20

− 132a03b02b20 − 80b302b20 − 286a02b02b11b20 + 47b02b
2
11b20 − 144b02b12b20 − 160a2

02b
2
20 − 102a03b

2
20

+ 12b202b
2
20 − 306a02b11b

2
20 + 61b211b

2
20 − 114b12b

2
20 + 260b02b

3
20 + 200b420 − 30a02b02b21 − 39b02b11b21

+ 84a02b20b21 − 96b11b20b21 + 27b221 + 132a2
02b30 + 81a03b30 − 66b202b30 + 207a02b11b30 − 6b211b30

− 6a2
02b

2
11 + 81b12b30 − 498b02b20b30 − 498b220b30 + 135b230,

j2 =224a3
02b02 + 240a02a03b02 − 16a02b

3
02 − 184a2

02b02b11 + 6a03b02b11 + 40b302b11 + 124a02b02b
2
11 − 11b02b

3
11

− 156a02b02b12 + 54b02b11b12 − 120a3
02b20 − 108a02a03b20 + 104a02b

2
02b20 + 40a2

02b11b20 + 27a03b11b20

+ 38b202b11b20 + 77a02b
2
11b20 − 8b311b20 + 24a02b12b20 + 39b11b12b20 + 140a02b02b

2
20 − 64b02b11b

2
20

− 120a02b
3
20 − 50b11b

3
20 − 48a2

02b21 − 45a03b21 − 42b202b21 − 87a02b11b21 − 27b12b21 − 6b02b20b21

+ 6b211b21 + 30b220b21 − 270a02b02b30 + 105b02b11b30 + 108a02b20b30 + 84b11b20b30 − 36b21b30.
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[7] J. Chavarriga, J. Giné, I. A. Garćıa, Isochronous centers of a linear center perturbed by fourth degree
homogeneous polynomial, Bull. Sci. Math. 123 (1999) 77-96.

[8] T. Chen, W. Huang, D. Ren, Weak centers and local critical periods for a Z2-equivariant cubic system,
Nonlinear Dyn. 78 (2014) 2319–2329.

[9] X. Chen, W. Huang, V. G. Romanovski, W. Zhang, Linearizability conditions of a time-reversible quartic-
like system, J. Math. Anal. Appl. 383 (2011) 179–189.

[10] X. Chen, W. Huang, V. G. Romanovski, W. Zhang, Linearizability and local bifurcation of critical periods
in a cubic Kolmogorov system, J. Comput. Appl. Math. 245 (2013) 86–96.

[11] C. Chicone, M. Jacobs, Bifurcation of critical periods for planar vector fields, Trans. Amer. Math. Soc.
312 (1989) 433–486.

[12] C. Christopher, C. Devlin, Isochronous centers in planar polynomial systems, SIAM J. Math. Anal. 28
(1997) 162–177.

[13] C. Christopher, C. Rousseau, Nondegenerate linearizable centres of complex planar quadratic and sym-
metric cubic systems in C2, Publ. Mat. 45 (2001) 95–123.
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